Signal Models

Signal Models - Unit Step Function u(t)

Step function defined by:

$$
u(t)= \begin{cases}1 & t \geq 0 \\ 0 & t<0\end{cases}
$$

Useful to describe a signal that begins at $t=0$ (i.e. causal signal).

For example, the signal $e^{-a t}$ represents an everlasting exponential that starts at $\mathrm{t}=-\infty$.

The causal for of this exponential $e^{-a t} u(t)$

Signal Models - Pulse Signal

A pulse signal can be presented by two step functions:
$x(t)=u(t-2)-u(t-4)$

Signal Models - Unit Impulse Function $\delta(\mathrm{t})$

First defined by Dirac as:

$$
\begin{aligned}
\delta(t) & =0 \quad t \neq 0 \\
\int_{-\infty}^{\infty} \delta(t) d t & =1
\end{aligned}
$$

Multiplying Function $\phi(t)$ by an Impulse

Since impulse is non-zero only at $\mathrm{t}=0$, and $\phi(\mathrm{t})$ at $\mathrm{t}=0$ is $\phi(0)$, we get:

$$
\phi(t) \delta(t)=\phi(0) \delta(t)
$$

We can generalize this for $\mathrm{t}=\mathrm{T}$:

$$
\phi(t) \delta(t-T)=\phi(T) \delta(t-T)
$$

Sampling Property of Unit Impulse Function

Since we have:

$$
\phi(t) \delta(t)=\phi(0) \delta(t)
$$

It follows that:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \phi(t) \delta(t) d t & =\phi(0) \int_{-\infty}^{\infty} \delta(t) d t \\
& =\phi(0)
\end{aligned}
$$

This is the same as "sampling" $\phi(\mathrm{t})$ at $\mathrm{t}=0$. If we want to sample $\phi(\mathrm{t})$ at $\mathrm{t}=\mathrm{T}$, we just multiple $\phi(\mathrm{t})$ with

$$
\delta(t-T)
$$

This is called tr $\int_{-\infty}^{\infty} \phi(t) \delta(t-T) d t=\phi(T)$ rty" of the impulse.

Examples

Simplify the following expression

$$
\left(\frac{1}{j \omega+2}\right) \delta(\omega+3)
$$

Evaluate the following

$$
\int_{-\infty}^{\infty} \delta(t+3) e^{-t} d t
$$

Find $\mathrm{dx} / \mathrm{dt}$ for the following signal

$$
x(t)=u(t-2)-3 u(t-4)
$$

The Exponential Function e ${ }^{\text {st }}$

This exponential function is very important in signals \& systems, and the parameter s is a complex variable given by:

$$
s=\sigma+j \omega
$$

Therefore

$$
e^{s t}=e^{(\sigma+j \omega) t}=e^{\sigma t} e^{j \omega t}=e^{\sigma t}(\cos \omega t+j \sin \omega t)
$$

Since $s^{*}=\sigma-j \omega($ the conjugate of $s)$, then

$$
e^{s^{* t}}=e^{\sigma-j \dot{\omega}}=e^{\sigma t} e^{-j \omega t}=e^{\sigma t}(\cos \omega t-j \sin \omega t)
$$

and

$$
e^{\sigma t} \cos \omega t=\frac{1}{2}\left(e^{s t}+e^{s^{*} t}\right)
$$

The Exponential Function $e^{\text {st }}$

If $\sigma=0$, then we have the function $\mathrm{e}^{\mathrm{j} \omega \mathrm{t}}$, which has a real frequency of ω

Therefore the complex variable $s=\sigma+j \omega$ is the complex frequency

The function $e^{s t}$ can be used to describe a very large class of signals and functions. Here are a number of example:

1. A constant $k=k e^{0 t} \quad(s=0)$
2. A monotonic exponential $e^{\sigma t} \quad(\omega=0, s=\sigma)$
3. A sinusoid $\cos \omega t \quad(\sigma=0, s= \pm j \omega)$
4. An exponentially varying sinusoid $e^{\sigma t} \cos \omega t$

$$
(s=\sigma \pm j \omega)
$$

The Exponential Function $e^{\text {st }}$

The Complex Frequency Plane $s=\sigma+j \omega$

A real function $x_{e}(t)$ is said to be an even function of t if

$$
x_{e}(t)=x_{e}(-t)
$$

A real function $x_{0}(t)$ is said to be an odd function of t if

$$
x_{o}(t)=-x_{o}(-t)
$$

HW1_Ch1: 1.1-3, 1.1-4, 1.2-2(a,b,d), 1.2-5, 1.4-3, 1.4-4, 1.4-5, 1.4-10 (b, f)

Even and Odd Function

Even and odd functions have the following properties:

- Even x Odd = Odd
- Odd \times Odd = Even
- Even x Even = Even

Every signal $x(t)$ can be expressed as a sum of even and odd components because:

$$
x(t)=\underbrace{\frac{1}{2}[x(t)+x(-t)]}_{\text {even }}+\underbrace{\frac{1}{2}[x(t)-x(-t)]}_{\text {odd }}
$$

Even and Odd Function

Consider the causal exponential function

$$
x(t)=e^{-a t} u(t)
$$

$$
x(t)=x_{e}(t)+x_{o}(t)
$$

$$
x_{e}(t)=\frac{1}{2}\left[e^{-a t} u(t)+e^{a t} u(-t)\right]
$$

$$
x_{o}(t)=\frac{1}{2}\left[e^{-a t} u(t)-e^{a t} u(-t)\right]
$$

